Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Auton Neurosci ; 248: 103107, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454409

RESUMO

Previous studies from our laboratory have shown that the pressor response to intracerebroventricular (icv) administered ANG II in normotensive rats or spontaneously hypertensive rats (SHRs) is attenuated by increased central H2O2 concentration, produced either by direct H2O2 icv injection or by increased endogenous H2O2 centrally in response to local catalase inhibition with 3-amino-1,2,4-triazole (ATZ). In the present study, we evaluated the effects of ATZ administered peripherally on arterial pressure and sympathetic and angiotensinergic activity in SHRs. Male SHRs weighing 280-330 g were used. Mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious freely moving SHRs. Acute intravenous injection of ATZ (300 mg/kg of body weight) did not modify MAP and HR during the next 4 h, however, the treatment with ATZ (300 mg/kg of body weight twice per day) for 3 days reduced MAP (144 ± 6, vs. saline, 183 ± 13 mmHg), without changing HR. Intravenous hexamethonium (ganglionic blocker) produced a smaller decrease in MAP 4 h after ATZ (-25 ± 3, vs saline -38 ± 4 mmHg). Losartan (angiotensinergic AT1 receptor blocker) produced a significant depressor response 4 h after ATZ (-22 ± 4, vs. saline: -2 ± 4 mmHg) and in 3-day ATZ treated SHRs (-25 ± 5, vs. saline: -9 ± 4 mmHg). The results suggest that the treatment with ATZ reduces sympathetic activity in SHRs and simultaneously increases angiotensinergic activity.


Assuntos
Hipertensão , Triazóis , Ratos , Masculino , Animais , Ratos Endogâmicos SHR , Amitrol (Herbicida)/farmacologia , Triazóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Pressão Sanguínea , Frequência Cardíaca , Peso Corporal , Hipertensão/tratamento farmacológico
2.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R411-R422, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37519252

RESUMO

Renal denervation (RDN) is a potential therapy for drug-resistant hypertension. However, whether its effects are mediated by ablation of efferent or afferent renal nerves is not clear. Previous studies have implicated that renal inflammation and the sympathetic nervous system are driven by the activation of afferent and efferent renal nerves. RDN attenuated the renal inflammation and sympathetic activity in some animal models of hypertension. In the 2 kidney,1 clip (2K1C) model of renovascular hypertension, RDN also decreased sympathetic activity; however, mechanisms underlying renal and central inflammation are still unclear. We tested the hypothesis that the mechanisms by which total RDN (TRDN; efferent + afferent) and afferent-specific RDN (ARDN) reduce arterial pressure in 2K1C rats are the same. Male Sprague-Dawley rats were instrumented with telemeters to measure mean arterial pressure (MAP), and after 7 days, a clip was placed on the left renal artery. Rats underwent TRDN, ARDN, or sham surgery of the clipped kidney and MAP was measured for 6 wk. Weekly measurements of water intake (WI), urine output (UO), and urinary copeptin were conducted, and urine was analyzed for cytokines/chemokines. Neurogenic pressor activity (NPA) was assessed at the end of the protocol calculated by the depressor response after intraperitoneal injection of hexamethonium. Rats were euthanized and the hypothalamus and kidneys removed for measurement of cytokine content. MAP, NPA, WI, and urinary copeptin were significantly increased in 2K1C-sham rats, and these responses were abolished by both TRDN and ARDN. 2K1C-sham rats presented with renal and hypothalamic inflammation and these responses were largely mitigated by TRDN and ARDN. We conclude that RDN attenuates 2K1C hypertension primarily by ablation of afferent renal nerves which disrupts bidirectional renal neural-immune pathways.NEW & NOTEWORTHY Hypertension resulting from reduced perfusion of the kidney is dependent on renal sensory nerves, which are linked to inflammation in the kidney and hypothalamus. Afferent renal nerves are required for chronic increases in both water intake and vasopressin release observed following renal artery stenosis. Findings from this study suggest an important role of renal sensory nerves that has previously been underestimated in the pathogenesis of 2K1C hypertension.


Assuntos
Hipertensão Renovascular , Hipertensão , Nefrite , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Rim , Sistema Nervoso Simpático , Hipotálamo , Inflamação , Pressão Sanguínea/fisiologia
3.
J Hypertens ; 41(10): 1634-1644, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466439

RESUMO

BACKGROUND: A growing body of evidence suggests that oxidative stress plays a role in the pathophysiology of hypertension. However, the involvement of the reactive oxygen species (ROS) in the commissural nucleus of the solitary tract (commNTS) in development the of hypertension remains unclear. METHOD: We evaluated the hemodynamic and sympathetic responses to acute inhibition of NADPH oxidase in the commNTS in renovascular hypertensive rats. Under anesthesia, male Holtzman rats were implanted with a silver clip around the left renal artery to induce 2-kidney 1-clip (2K1C) hypertension. After six weeks, these rats were anesthetized and instrumented for recording mean arterial pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and renal sympathetic nerve activity (RSNA) during baseline and after injection of apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), NSC 23766 (RAC inhibitor) or saline into the commNTS. RESULTS: Apocynin into the commNTS decreased MAP, RSNA, and RVR in 2K1C rats. NSC 23766 into the commNTS decreased MAP and RSNA, without changing RVR in 2K1C rats. CONCLUSION: These results demonstrate that the formation of ROS in the commNTS is important to maintain sympathoexcitation and hypertension in 2K1C rats and suggest that NADPH oxidase in the commNTS could be a potential target for therapeutics in renovascular hypertension.


Assuntos
Hipertensão Renovascular , Hipertensão , Ratos , Masculino , Animais , Pressão Arterial , Núcleo Solitário/metabolismo , NADP , Espécies Reativas de Oxigênio , Pressão Sanguínea/fisiologia , Rim , Sistema Nervoso Simpático , Ratos Sprague-Dawley , NADPH Oxidases/metabolismo
4.
Life Sci ; 319: 121538, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868399

RESUMO

AIMS: Reactive oxygen species like hydrogen peroxide (H2O2) are produced endogenously and may participate in intra- and extracellular signaling, including modulation of angiotensin II responses. In the present study, we investigated the effects of chronic subcutaneous (sc) administration of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ) on arterial pressure, autonomic modulation of arterial pressure, hypothalamic expression of AT1 receptors and neuroinflammatory markers and fluid balance in 2-kidney, 1clip (2K1C) renovascular hypertensive rats. MATERIALS AND METHODS: Male Holtzman rats with a clip occluding partially the left renal artery and chronic sc injections of ATZ were used. KEY FINDINGS: Subcutaneous injections of ATZ (600 mg/kg of body weight/day) for 9 days in 2K1C rats reduced arterial pressure (137 ± 8, vs. saline: 182 ± 8 mmHg). ATZ also reduced the sympathetic modulation and enhanced the parasympathetic modulation of pulse interval, reducing the sympatho-vagal balance. Additionally, ATZ reduced mRNA expression for interleukins 6 and IL-1ß, tumor necrosis factor-α, AT1 receptor (0.77 ± 0.06, vs. saline: 1.47 ± 0.26 fold change), NOX 2 (0.85 ± 0.13, vs. saline: 1.75 ± 0.15 fold change) and the marker of microglial activation, CD 11 (0.47 ± 0.07, vs. saline, 1.34 ± 0.15 fold change) in the hypothalamus of 2K1C rats. Daily water and food intake and renal excretion were only slightly modified by ATZ. SIGNIFICANCE: The results suggest that the increase of endogenous H2O2 availability with chronic treatment with ATZ had an anti-hypertensive effect in 2K1C hypertensive rats. This effect depends on decreased activity of sympathetic pressor mechanisms and mRNA expression of AT1 receptors and neuroinflammatory markers possibly due to reduced angiotensin II action.


Assuntos
Hipertensão Renovascular , Hipertensão , Nefropatias , Ratos , Masculino , Animais , Hipertensão Renovascular/tratamento farmacológico , Angiotensina II/farmacologia , Catalase , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Ratos Sprague-Dawley , RNA Mensageiro , Pressão Sanguínea
5.
Front Immunol ; 13: 1033774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389846

RESUMO

The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.


Assuntos
Corpo Carotídeo , Animais , Neuroimunomodulação , Oxigênio/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Mamíferos/metabolismo
6.
Neurosci Lett ; 778: 136601, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364127

RESUMO

GABAA receptor activation with agonist muscimol in the lateral parabrachial nucleus (LPBN) induces 0.3 M NaCl intake. In the present study, we investigated water and 0.3 M NaCl intake in male adult rats treated with losartan (angiotensin AT1 receptor antagonist) or MeT-AVP (V1-type vasopressin receptor antagonist) combined with muscimol or methysergide (5-HT2 antagonist) into the LPBN in rats treated with intragastric 2 M NaCl. After 2 M NaCl load and bilateral injections of muscimol (0.5 nmol/0.2 µL) into the LPBN, rats ingested water and 0.3 M NaCl. The pre-treatment of the LPBN with MeT-AVP (1 nmol/0.2 µL) but not losartan (50 µg/0.2 µL) in muscimol treated rats reduced 0.3 M NaCl intake. The pre-treatment of the LPBN with MeT-AVP did not modify the increased 0.3 M NaCl intake in rats treated with methysergide (4 µg/0.2 µL), suggesting that the effect of MeT-AVP was not due to non-specific inhibition of ingestive behavior. The results suggest that endogenous vasopressin in the LPBN facilitates the effects of GABAergic activation driving cell-dehydrated male rats to ingest 0.3 M NaCl.


Assuntos
Núcleos Parabraquiais , Antagonistas de Receptores de Angiotensina , Animais , Ingestão de Líquidos , Losartan/farmacologia , Masculino , Metisergida/farmacologia , Muscimol/farmacologia , Núcleos Parabraquiais/fisiologia , Ratos , Receptores de GABA-A/metabolismo , Receptores de Vasopressinas , Cloreto de Sódio/farmacologia , Água/farmacologia
7.
Brain Behav Immun ; 102: 370-386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339628

RESUMO

Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.


Assuntos
Corpo Carotídeo , Animais , Anti-Inflamatórios , Bulbo/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa
9.
Hypertens Res ; 43(11): 1192-1203, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32461634

RESUMO

Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2) or the increase of endogenous H2O2 centrally produced by catalase inhibition with 3-amino-1,2,4-triazole (ATZ) injected icv reduces the pressor responses to central angiotensin II (ANG II) in normotensive rats. In the present study, we investigated the changes in the arterial pressure and in the pressor responses to ANG II icv in spontaneously hypertensive rats (SHRs) and 2-kidney, 1-clip (2K1C) hypertensive rats treated with H2O2 injected icv or ATZ injected icv or intravenously (iv). Adult male SHRs or Holtzman rats (n = 5-10/group) with stainless steel cannulas implanted in the lateral ventricle were used. In freely moving rats, H2O2 (5 µmol/1 µl) or ATZ (5 nmol/1 µl) icv reduced the pressor responses to ANG II (50 ng/1 µl) icv in SHRs (11 ± 3 and 17 ± 4 mmHg, respectively, vs. 35 ± 6 mmHg) and 2K1C hypertensive rats (3 ± 1 and 16 ± 3 mmHg, respectively, vs. 26 ± 2 mmHg). ATZ (3.6 mmol/kg of body weight) iv alone or combined with H2O2 icv also reduced icv ANG II-induced pressor response in SHRs and 2K1C hypertensive rats. Baseline arterial pressure was also reduced (-10 to -15 mmHg) in 2K1C hypertensive rats treated with H2O2 icv and ATZ iv alone or combined and in SHRs treated with H2O2 icv alone or combined with ATZ iv. The results suggest that exogenous or endogenous H2O2 acting centrally produces anti-hypertensive effects impairing central pressor mechanisms activated by ANG II in SHRs or 2K1C hypertensive rats.


Assuntos
Amitrol (Herbicida)/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Peróxido de Hidrogênio/administração & dosagem , Hipertensão/tratamento farmacológico , Oxidantes/administração & dosagem , Angiotensina II , Animais , Catalase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Infusões Intraventriculares , Masculino , Ratos Endogâmicos SHR
10.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R730-R742, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022595

RESUMO

The two kidney-one clip (2K1C) renovascular hypertension depends on the renin-angiotensin system and sympathetic overactivity. The maintenance of 2K1C hypertension also depends on inputs from the carotid bodies (CB), which when activated stimulate the respiratory activity. In the present study, we investigated the importance of CB afferent activity for the ventilatory responses in 2K1C hypertensive rats and for phrenic and hypoglossal activities in in situ preparations of normotensive rats treated with angiotensin II. Silver clips were implanted around the left renal artery of male Holtzman rats (150 g) to induce renovascular hypertension. Six weeks after clipping, hypertensive 2K1C rats showed, in conscious state, elevated resting tidal volume and minute ventilation compared with the normotensive group. 2K1C rats also presented arterial alkalosis, urinary acidification, and amplified hypoxic ventilatory response. Carotid body removal (CBR), 2 wk before the experiments (4th week after clipping), significantly reduced arterial pressure and pulmonary ventilation in 2K1C rats but not in normotensive rats. Intra-arterial administration of angiotensin II in the in situ preparation of normotensive rats increased phrenic and hypoglossal activities, responses that were also reduced after CBR. Results show that renovascular hypertensive rats exhibit increased resting ventilation that depends on CB inputs. Similarly, angiotensin II increases phrenic and hypoglossal activities in in situ preparations of normotensive rats, responses that also depend on CB inputs. Results suggest that mechanisms that depend on CB inputs in renovascular hypertensive rats or during angiotensin II administration in normotensive animals increase respiratory drive.


Assuntos
Corpo Carotídeo/fisiologia , Hipertensão Renovascular/fisiopatologia , Ratos Sprague-Dawley , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Animais , Nervo Hipoglosso/fisiologia , Masculino , Fenilefrina/administração & dosagem , Fenilefrina/farmacologia , Nervo Frênico/fisiologia , Ratos , Sistema Nervoso Simpático , Simpatomiméticos/farmacologia
11.
Pflugers Arch ; 472(1): 49-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884528

RESUMO

The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipercapnia/metabolismo , Respiração , Transmissão Sináptica , Comissuras Telencefálicas/fisiologia , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Hipercapnia/fisiopatologia , Nervo Hipoglosso/fisiologia , Masculino , Mecamilamina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Nervo Frênico/fisiologia , Ratos , Receptores Colinérgicos/metabolismo , Reflexo , Núcleo Solitário/fisiologia , Núcleo Solitário/fisiopatologia , Comissuras Telencefálicas/fisiopatologia
12.
Brain Res Bull ; 153: 266-272, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545999

RESUMO

Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2), a reactive oxygen species, or the blockade of catalase (enzyme that degrades H2O2 into H2O and O2) with icv injection of 3-amino-1,2,4-triazole (ATZ) reduces the pressor effects of angiotensin II also injected icv. In the present study, we investigated the effects of ATZ injected icv or intravenously (iv) on the pressor responses induced by icv injections of the cholinergic agonist carbachol, which similar to angiotensin II induces pressor responses that depend on sympathoexcitation and vasopressin release. In addition, the effects of H2O2 icv on the pressor responses to icv carbachol were also tested to compare with the effects of ATZ. Normotensive non-anesthetized male Holtzman rats (280-300 g, n = 8-9/group) with stainless steel cannulas implanted in the lateral ventricle were used. Previous injection of ATZ (5 nmol/1 µl) or H2O2 (5 µmol/1 µl) icv similarly reduced the pressor responses induced by carbachol (4 nmol/1 µl) injected icv (13 ± 4 and 12 ± 4 mmHg, respectively, vs. vehicle + carbachol: 30 ± 5 mmHg). ATZ (3.6 mmol/kg of body weight) injected iv also reduced icv carbachol-induced pressor responses (21 ± 2 mmHg). ATZ icv or iv and H2O2 icv injected alone produced no effect on baseline arterial pressure. The treatments also produced no significant change of heart rate. The results show that ATZ icv or iv reduced the pressor responses to icv carbachol, suggesting that endogenous H2O2 acting centrally inhibits the pressor mechanisms (sympathoactivation and/or vasopressin release) activated by central cholinergic stimulation.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catalase/farmacologia , Hipertensão/fisiopatologia , Amitrol (Herbicida)/farmacologia , Angiotensina II , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Vasoconstritores/farmacologia , Vasopressinas
13.
Behav Brain Res ; 373: 112075, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284013

RESUMO

Obesity activates the renin-angiotensin and sympathetic systems facilitating hypertension and changes in the hydroelectrolytic balance. In the present study, in rats fed with high-fat diet (HFD), we investigated daily water intake and urinary excretion, prandial consumption of water and the changes in blood pressure and water intake to intracerebroventricular (icv) angiotensin II (ANG II). Male Holtzman rats (290-320 g) were fed with standard diet (SD, 11% calories from fat) or HFD (45% calories from fat) for 6 weeks. Part of the animals received a stainless steel cannula in the lateral ventricle (LV) at the 6th week after the beginning of the diets and the experiments were performed at the 7th week. The pressor effect, but not the dipsogenic response to acute icv injection of ANG II, was potentiated in the HFD rats. Daily water intake and urinary volume were reduced in rats fed with HFD with no significant changes in sodium excretion. Prandial water consumption was also reduced in rats ingesting HFD, an effect almost totally reverted blocking salivation with atropine. These results show a potentiation of the pressor response to icv ANG II in HFD-fed rats, without changing icv ANG II-induced water intake. In addition, prandial and daily water intake and urinary volume were reduced in HFD-fed rats, without changing sodium excretion. Salivation in rats ingesting HFD may play a role in the reduced prandial and daily water intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ingestão de Líquidos/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Hipertensão/fisiopatologia , Injeções Intraventriculares , Masculino , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Equilíbrio Hidroeletrolítico/fisiologia
14.
Hypertens Res ; 42(5): 587-597, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30622315

RESUMO

The rodent renovascular hypertension model has been used to investigate the mechanisms promoting hypertension. The importance of the carotid body for renovascular hypertension has been demonstrated. As the commissural NTS (cNTS) is the first synaptic site in the central nervous system that receives information from carotid body chemoreceptors, we evaluated the contribution of cNTS to renovascular hypertension in the present study. Normotensive male Holtzman rats were implanted with a silver clip around the left renal artery to induce two-kidney, one-clip (2K1C) hypertension. Six weeks later, isoguvacine (a GABAA agonist) or losartan (an AT1 antagonist) was injected into the cNTS, and the effects were compared with carotid body removal. Immunohistochemistry for Iba-1 and GFAP to label microglia and astrocytes, respectively, and RT-PCR for components of the renin-angiotensin system and cytokines in the NTS were also performed 6 weeks after renal surgery. The inhibition of cNTS with isoguvacine or the blockade of AT1 receptors with losartan in the cNTS decreased the blood pressure and heart rate of 2K1C rats even more than carotid body removal did. The mRNA expression of NOX2, TNF-α and IL-6, microglia, and astrocytes also increased in the cNTS of 2K1C rats compared to that of normotensive rats. These results indicate that tonically active neurons within the cNTS are essential for the maintenance of hypertension in 2K1C rats. In addition to signals from the carotid body, the present results suggest that angiotensin II directly activates the cNTS and may also induce microgliosis and astrogliosis within the NTS, which, in turn, cause oxidative stress and neuroinflammation.


Assuntos
Hipertensão Renovascular/etiologia , Núcleo Solitário/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Animais , Corpo Carotídeo/cirurgia , Hipertensão Renovascular/patologia , Hipertensão Renovascular/cirurgia , Masculino , Ratos Sprague-Dawley , Núcleo Solitário/patologia
15.
Hypertens Res ; 42(4): 439-449, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30631157

RESUMO

A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Pressão Arterial/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Núcleo Solitário/metabolismo , Animais , Pressão Arterial/fisiologia , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Dieta Hiperlipídica , Masculino , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/fisiologia , Núcleo Solitário/efeitos dos fármacos
16.
Brain Res Bull ; 144: 14-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391542

RESUMO

Central cholinergic activation stimulates water intake, but also NaCl intake when the inhibitory mechanisms are blocked with injections of moxonidine (α2 adrenergic/imidazoline agonist) into the lateral parabrachial nucleus (LPBN). In the present study, we investigated the involvement of central M1 and M2 muscarinic receptors on NaCl intake induced by pilocarpine (non-selective muscarinic agonist) intraperitoneally combined with moxonidine into the LPBN or by muscimol (GABAA agonist) into the LPBN. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN and in the lateral ventricle were used. Pirenzepine (M1 muscarinic antagonist, 1 nmol/1 µl) or methoctramine (M2 muscarinic antagonist, 50 nmol/1 µL) injected intracerebroventricularly (i.c.v.) reduced 0.3 M NaCl and water intake in rats treated with pilocarpine (0.1 mg/100 g of body weight) injected intraperitoneally combined with moxonidine (0.5 nmol/0.2 µL) into the LPBN. In rats treated with muscimol (0.5 nmol/0.2 µL) into the LPBN, methoctramine i.c.v. also reduced 0.3 M NaCl and water intake, however, pirenzepine produced no effect. The results suggest that M1 and M2 muscarinic receptors activate central pathways involved in the control of water and sodium intake that are under the influence of the LPBN inhibitory mechanisms.


Assuntos
Ingestão de Líquidos/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Cloreto de Sódio/metabolismo , Animais , Diaminas/farmacologia , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Imidazóis/farmacologia , Masculino , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Muscimol/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Pilocarpina/farmacologia , Pirenzepina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M2/efeitos dos fármacos , Sódio na Dieta
17.
Respir Physiol Neurobiol ; 258: 32-39, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308245

RESUMO

Breathing disorders are commonly observed in association with obesity. Here we tested whether high-fat diet (HFD) impairs the chemoreflex ventilatory response. Male Holtzman rats (300-320 g) were fed with standard chow diet (SD) or HFD for 12 weeks. Then, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were determined in conscious rats during basal condition, hypercapnia (7% or 10% CO2) or hypoxia (7% O2). The mean arterial pressure (MAP), heart rate (HR) and baroreflex sensitivity were also evaluated in conscious rats. A group of anesthetized rats was used for the measurements of the activity of inspiratory (diaphragm) and expiratory (abdominal) muscles under the same gas conditions. Baseline fR, VT and VE were similar between SD and HFD rats. During hypercapnia, the increase of fR was exacerbated in conscious HFD rats (60 ± 3, vs. SD: 47 ± 3 Δ breaths.min-1, P < 0.05). In anesthetized rats, hypercapnia strongly increased abdominal muscle activity in HFD group (238 ± 27, vs. basal condition: 100 ± 0.3%; P < 0.05), without significant change in SD group (129 ± 2.1, vs. basal condition: 100 ± 0.8%; P = 0.34). The ventilatory responses to hypoxia were similar between groups. In conscious HFD rats, MAP and HR were elevated and the baroreflex function was impaired (P < 0.05). These data demonstrated that 12 weeks of HFD exaggerate the ventilatory response activated by hypercapnia. The mechanisms involved in these responses need more investigation in future studies.


Assuntos
Músculos Abdominais/fisiologia , Dieta Hiperlipídica/métodos , Hipercapnia/fisiopatologia , Respiração , Taxa Respiratória/fisiologia , Músculos Abdominais/efeitos dos fármacos , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Biometria , Pressão Sanguínea , Diafragma/efeitos dos fármacos , Diafragma/fisiologia , Modelos Animais de Doenças , Eletromiografia , Expiração , Frequência Cardíaca/fisiologia , Masculino , Consumo de Oxigênio/fisiologia , Pletismografia , Ventilação Pulmonar , Ratos , Respiração/efeitos dos fármacos , Estatísticas não Paramétricas
18.
Brain Res Bull ; 139: 174-181, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29432796

RESUMO

The activation of GABA, opioid or α2 adrenergic mechanisms in the lateral parabrachial nucleus (LPBN) facilitates hypertonic NaCl intake in rats. In the present study, we combined opioid or α2 adrenergic antagonists with GABA agonists into the LPBN in order to investigate if NaCl intake caused by GABAergic activation in normohydrated rats depends on opioid or α2-adrenergic mechanisms in this area. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. Bilateral injections of muscimol or baclofen (GABAA and GABAB agonists, respectively, 0.5 nmol/0.2 µl) into the LPBN induced strong ingestion of 0.3 M NaCl (45.8 ±â€¯7.3 and 21.8 ±â€¯4.8 ml/240 min, respectively) and water intake (22.7 ±â€¯3.4 and 6.6 ±â€¯2.5 ml/240 min, respectively). Naloxone (opioid antagonist, 150 nmol/0.2 µl) into the LPBN abolished 0.3 M NaCl and water intake to muscimol (2.0 ±â€¯0.6 and 0.9 ±â€¯0.2 ml/240 min, respectively) or baclofen (2.3 ±â€¯1.1 and 0.8 ±â€¯0.4 ml/240 min, respectively). RX 821002 (α2 adrenoceptor antagonist, 10 nmol/0.2 µl) into the LPBN reduced 0.3 M NaCl intake induced by the injections of muscimol or baclofen (26.6 ±â€¯8.0 and 10.1 ±â€¯4.9 ml/240 min, respectively). RX 821002 reduced water intake induced by muscimol (7.7 ±â€¯2.9 ml/240 min), not by baclofen. The results suggest that sodium intake caused by gabaergic activation in the LPBN in normohydrated rats is totally dependent on the activation of opioid mechanisms and partially dependent on the activation of α2 adrenergic mechanisms in the LPBN.


Assuntos
Analgésicos Opioides/metabolismo , Agonistas GABAérgicos/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Sódio/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Baclofeno/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Interações Medicamentosas , Idazoxano/análogos & derivados , Idazoxano/farmacologia , Masculino , Muscimol/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Fatores de Tempo
19.
Peptides ; 101: 82-88, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29305157

RESUMO

Renovascular hypertensive 2-kidney, 1-clip (2K1C) rats have an increased activity of the renin-angiotensin system and an initial transitory increase in daily water and NaCl intake. However, the dipsogenic and natriorexigenic responses to angiotensin II (ANG II) have not been tested yet in 2K1C rats. Therefore, in the present study, we evaluated water and 0.3 M NaCl intake induced by water deprivation (WD)-partial rehydration (PR) or intracerebroventricular (icv) ANG II in 2K1C rats. In addition, the cardiovascular changes to these treatments were also evaluated. Male Holtzman rats received a silver clip around the left renal artery to induce 2K1C renovascular hypertension. In the 5th week, a group of animals received a guide cannula in the lateral ventricle for icv injections. Daily water intake increased from the 3rd week after surgery and remained elevated until the 6th week (last recording week), whereas daily 0.3 M NaCl intake transiently increased from the 2nd to the 5th week after surgery. On the 6th week, in spite of comparable daily 0.3 M NaCl intake between 2K1C and sham rats, WD-PR and icv ANG II induced an increased 0.3 M NaCl intake in 2K1C rats. Water intake induced by WD-PR, not by icv ANG II, also increased in 2K1C rats. The increase in arterial pressure to WD-PR or icv ANG II was similar in sham and 2K1C rats. Therefore, these results suggest that 2K1C rats are more responsive to the natriorexigenic effects of ANG II, whereas other responses to ANG II are not modified.


Assuntos
Angiotensina II/farmacologia , Apetite/efeitos dos fármacos , Hipertensão Renal/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Sódio/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Hipertensão Renal/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Behav Brain Res ; 333: 17-26, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28625546

RESUMO

Angiotensin II (ANG II) is a typical facilitatory stimulus for sodium appetite. Surprisingly, hyperosmolarity and central cholinergic stimulation, two classical antinatriorexigenic stimuli, also facilitate NaCl intake when they are combined with injections of the α2-adrenoceptor/imidazoline agonist moxonidine into the lateral parabrachial nucleus (LPBN). In the present study, we tested the relative importance of central angiotensinergic and cholinergic mechanisms for the control of water and NaCl intake by combining different dipsogenic or natriorexigenic stimuli with moxonidine injection into the LPBN. Adult male Holtzman rats (n=9-10/group) with stainless steel cannulas implanted in the lateral ventricle and LPBN were used. Bilateral injections of moxonidine (0.5 nmol) into the LPBN increased water and 0.3M NaCl intake in rats that received furosemide+captopril injected subcutaneously, ANG II (50ng) or carbachol (cholinergic agonist, 4 nmol) injected intracerebroventricularly (icv) or 2M NaCl infused intragastrically (2ml/rat). Losartan (AT1 antagonist, 100µg) or atropine (muscarinic antagonist, 20 nmol) injected icv abolished the effects on water and 0.3M NaCl of moxonidine combined to either 2M NaCl intragastrically or carbachol icv. However, atropine icv did not change 0.3M NaCl intake produced by direct central action of ANG II like that induced by ANG II icv or furosemide+captopril combined with moxonidine into the LPBN. The results suggest that different stimuli, including hyperosmolarity and central cholinergic stimulation, share central angiotensinergic activation as a common mechanism to facilitate sodium intake, particularly when they are combined with deactivation of the LPBN inhibitory mechanisms.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Cloreto de Sódio/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Atropina/farmacologia , Captopril/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Furosemida/farmacologia , Imidazóis/farmacologia , Losartan/farmacologia , Masculino , Antagonistas Muscarínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...